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Abstract 

Many software engineering problems stem, in part, from the need for 
software designers to understand specialized knowledge domains. Current 

computer software systems are not capable of representing familiar 
calculation features such as equations, tables, graphs, procedures, and 
pictures so that these features assist humans to perform calculations in a 
natural, intuitive way. This report explains the need for these features to 
present users with “natural” ways of doing calculations-that is, ways 
analogous to the paper-based techniques used in the absence of computers. 
Features presented in this way would make computing more transparent and 
intuitive. In the Nutz~ul Conzputilzg approach proposed in this report, software 
tools are first developed and then given to domain specialists to use in their 

calculation methods, knowledge, and data. As domain knowledge changes 
and grows, and/or new calculation methods are needed, software developers 

can add new methods and procedures to the existing methods (or delete old 
ones) and develop successively enhanced versions of application software for 
use by both specialists and naive end users. Domain information and 
knowledge can be captured in electronic books and communicated 
electronically for further expeditious use. Natural Computing eases 
application system development and accelerates domain knowledge 
dissemination, leading to quicker development of further knowledge. 
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1. Introduction 

High life-cycle costs and poor quality are the main problems with current 
software development. Several methods and practices have been pro- 
posed to address these problems, with limited success. One of the more 
successful approaches is to develop generic tools, such as those for word 
processing, drawing, and databases; these have resulted in the economi- 
cal development of software. These tools have become very affordable 
and are of good quality. In many technical scientific domains, however, in 
which computers are used to conzpute in the earliest sense of the word-to 
make calculations-software development is still complex, slow, unreli- 
able, incomplete, and very expensive. The result is that software for literal 
computing is often the least satisfactory type of computer software. In 
large part, this anomaly arises because software developers and domain 
specialists are usually different groups. 

The approach I propose in this report, called Natural Conzptlfing, is in- 
tended to avoid this problem by providing domain specialists with 
software tools whose use and function are transparent and intuitive. In 
the term Nafuuol Computing, the word conzpufilzs is thus used in its basic 
sense, rather than the extended one that has arisen with the development 
of modern digital computers and particularly personal computers. The 
word natural is used to refer to the kind of understanding of paper-based 
means of computing that practitioners of technical subjects call on to read 
and work with technical documents. It could be argued that these tech- 
niques are hardly natural, since they have been developed over centuries 
(and individual people must learn them as part of their education and 
technical apprenticeship); however, I argue that they are natural in the 
same sense that many learned behaviors (such as riding a bicycle) can 
seem natural to a human being. It is nafwal in the same sense that com- 
puter scientists use in referring to the specialized field of natural language. 



2. Natural Computing Features 

Since Natural Computing is based on the way people actually compute 
using paper-based techniques, the first question to be addressed is “How 
do people compute-using available information of all types?” Before the 
invention of computers, most knowledge was captured in the form of 
books and other paper documents. Books can be further classified as 
textbooks, reference books, handbooks, and journals, based on the tempo- 
ral nature of the information. Other documents are flyers, brochures, and 
receipts, which have a highly transient nature. (I use books and documents 
interchangeably to refer to paper-based information.) Information was 
printed on paper for storage, retrieval, and communication. The paper- 
based information was read by the end user. By reading the information 
from one or more documents and by combining it with one’s own intu- 
ition, invention, and discovery, one generated new information and wrote 
(printed) it in the form of another paper document. 

When we dealt with technical matter, domain knowledge was captured in 
the form of text that contained equations, tables, graphs,* and pictures.+ 
Without pictures, descriptions of scenes were elaborate (a lot of text). The 
famous saying “a picture is worth a thousand words” sums it up. Again, 
in technical subjects, the pictures could be sketches, schematics, drawings, 
paintings, or photographs. Sketches stood for descriptions of parts and 
components, such as shapes and sizes. Schematics and other diagrams 
showed the mutual relationships of components in a system and the state 
of the system and its temporal nature. 

Tables captured relationships among sets of variables. Graphs also repre- 
sented relationships among variables but additionally provided a highly 
visual insight into the mutual dependency of the variables. 

Domain specialists read the text and concurrently used tables, graphs, 
and charts. They used a note pad to make temporary notes and calcula- 
tions, Simple calculations were done mentally. More complicated calcula- 
tions required aids, such as log tables and slide rules. Domain specialists 
captured new ideas and information in the form of more equations, 
tables, graphs, and pictures; appended them to text; and communicated 
the new documents to others in the field. Documents were subject to three 
principal types of use: (1) reading and comprehension; (2) interactive 
calculations using the tables, equations, graphs, and pictures along with 
the text; and (3) development and recording of new functions (tables, 
equations, graphs, and pictures). Capturing these essential natural forms 
and processes in a computer software system is the goal of Natural 
Computing. 

*The term gra~/z is used in literature with various meanings. In this paper, a graph means a curve or a set 
of curves on a graph paper. Gruplzs as in graph theory and graphics as in pictures are not the meanings 
implied. 

+The term yictrwc is used in this paper to include sketches, schematic diagrams, and drawings. It does not 
include photographs and painted pictures. 
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3. A Textbook Example of Natural Computing Features 

An example of paper-based computation tools from a textbook illustrates 
the features proposed for Natural Computing. Figure 1 shows a sample 
page from an engineering textbook describing mechanical springs. The 
page consists of a sketch of a mechanical spring, text, and equations. 
Figure 2 shows another sample page, with a graph, more equations, and 
more text. By reading the explanations on these pages, an engineer will 
understand the domain of mechanical springs. An engineer can study the 
graph on the page and understand the trends. At any time, the engineer 
can obtain values given by the graphs-this is usually called reading a 
graph. While using these pages, the engineer starts with values of D and 
d, proceeds to calculate the value of the variable C from equation 8-1 (a 
reference number in the sample page (fig. l)), and reads the value of the 
Wahl correction factor K from the graph of spring index versus stress 
correction factor. This value of K and an input value of F (force) are next 
substituted into equation 8-4 and the value of stress r is calculated (fig. 2). 
The engineer may next proceed to the sample page shown in figure 3, and 
read the values of A and nz for a given material. The engineer can substi- 
tute these values into equation S-10 to calculate the ultimate strength in 
tension of the spring material. 

This description shows that domain specialists present information in 
textbooks for use by others in performing calculations. Thus, textbooks 
are used both to explain the subject and to provide information in the 
form of text, sketches, equations, graphs, and tables for ready use in 
calculations. In the following sections, I describe how traditional comput- 
ing (using computer software) failed to follow the natural calculations 
paradigm and is accordingly beset by problems. 

3 



as LI mewxe of cnil curvature, With thk rtla ttcrn, Eq. I.&j cat-~ bz arrugd co girt 

Source: Joseph E. Shigley (1977). Meclmical Engilzeerilzg Desip, 3rd ed., McGraw-Hill Book Co., 
New York, NY. 

Figure 1. A sample page containing text, sketch, and equations. 

4 



Source: Joseph E. Shigley (1977). Mechnnical Efzgilzeerilzg Desi~~z, 3rd ed., McGraw-Hill Book Co., 
New York, NY. 

Figure 2. A sample page containing text, graph, and equations. 



Source: Joseph E. Shigley (1977). Mcclmzical Engineering Desip, 3rd ed., McGraw-Hill Book Co., 
New York, NY. 

Figure 3. A sample page containing text, table, and equations. 
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4. Problems 

. 

. 

. 

. 

. 

. 

4.3 

With Traditional Software Development 

While discussing the problems plaguing the software industry, Coad and 
Yourdon (1991) state, “systems analysts must first understand the prob- 
lem domain at hand.” They also answer the questions “What is so diffi- 
cult about analysis? And what is the challenge?” by identifying four 
major difficulties faced by systems analysts on all types of projects: 
problem domain understanding, person-to-person communication, 
continual change, and reuse: 

U~zdeusta~zcli~zg. Scientists devote their lifetimes to understanding their 
specific domains and to enriching them by discovering new knowledge. 
No wonder software systems analysts find it impossible to “understand” 
the domain. 

Cornnzunicafion. In any domain, different practitioners hold differing 
viewpoints and preconceptions that make communications among them 
difficult. Needless to say, communication with outsiders (such as systems 
analysts) seems well-nigh impossible. 

Chal7ge. As scientists work in a specific area, they hit upon new ideas 
constantly-that is their goal. Therefore, it is a given that a domain will 
continually change. (Modeling a domain that has ceased growing is easier 
for the systems analyst, of course, but the result may not be useful.) 

Reuse. Modern economies depend on the reuse of all knowledge and tools 
so that the many may enjoy the fruits of the labor (and inventiveness) of 
the few. Bricks and bolts and nuts are probably the best examples of 
engineering designs of great reuse. 

One can avoid these four types of difficulties, which are inherent in 
conventional software development, by using Natural Computing. As I 
conceive it in Natural Computing- 

Software developers do not need to understand a whole domain: they 
need only provide building blocks for the specialist to work with. 

Communication between domain specialists and software developers at 
the domain level of abstraction is unnecessary. 

The domain will be extended by the scientist (or engineer or domain 
analyst), not the software developer. 

Software engineers are provided ways to program building blocks. 

Development of Tools Versus Development of Domain 
Knowledge 

To assist a discipline, software developers do not need to grasp all the 
knowledge of that discipline, but they must understand its language and 
medium. Every field has developed notations, techniques, and methods 
for facilitating communications among practitioners within and between 
fields. Scientists and their followers constantly reuse these forms of 
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4.2 

knowledge for further understanding and for applications that benefit 
society. Both the methods of mathematicians and the tools and techniques 
of engineers provide such benefits. 

Certain disciplines, such as mathematics, enable other disciplines to 
deliver goods to society All sciences depend on mathematics to some 
degree to solve problems that can be formulated in mathematical termi- 
nology. Mathematicians do not, however, insist on “understanding” a 
science domain. Consider, for example, the application of quadratic 
equations. A scientist does not explain a domain problem to a mathemati- 
cian so that a quadratic equation solution can be applied. Instead, math- 
ematicians have suggested and supplied a number of methods for solving 
quadratic equations without regard to their particular application. In 
general, mathematicians have provided scientists with a vast array of 
theories and methods (such as complex variables, Laplace transforms, 
Fourier transforms, and Bessel functions). Following the example of the 
mathematicians, software developers and software engineers should 
abstain from demanding a full understanding of the domain in which 
they are developing applications. They will be able to contribute to 
human progress by providing free-standing methods for use by scientists 
and engineers. Software engineering professionals should develop the 
tools and enable the domain specialists to incorporate the domain knowl- 
edge and methods with the help of such tools. In this way, software is like 
mathematics, and its usefulness to humanity can be realized only through 
other domains. 

As scientists discover new facts, they codify their knowledge and present 
it in papers, articles, books, and handbooks. This knowledge is in the 
form of text, equations, tables, graphs, procedures, and pictures. These are 
the essential forms of the language of science and technology (as well as 
of other domains in which calculations play a part, such as engineering, 
accounting, economics, business management, and (even) political sci- 
ence). Natural Computing focuses on these forms, so that software engi- 
neers can develop tools that deal with computer representations of these 
forms. 

Generic Software 

Some examples of generic software development can be cited. Word 
processing, music, and graphics programs are available that are indepen- 
dent of a specific domain. Because these software tools employ the users’ 
language and notation and emulate their familiar tools, they can be used 
by a variety of practitioners. To the credit of such generic software, musi- 
cians can use computers to create music, and painters can use computers 
to paint. Software developers, in general, are likely to agree that it is best 
to assist artists, musicians, and painters by giving them appropriate tools, 
rather than trying to understand these richly complex domains. Unfortu- 
nately, however, when it comes to scientific, engineering, and analysis 
domains, developers attempt to understa& the domain and develop 
applications programming. This is the crux of the problem in software. 



4.3 

Brooks (1987) argued persuasively that there are no magic solutions to the 
fundamentally difficult problems associated with software development. 
There are no panaceas-no miracle cures that will automatically increase 
our productivity by orders of magnitude while eliminating all the soft- 
ware bugs. However, by focusing on the development of generic tools, 
software developers can reduce software bugs, and software develop- 
ment can be moved to a higher plane. 

Ends and Means 

Coad and Yourdon (1991) caution software practitioners that if the appli- 
cation of a software engineering method produces a monument of paper, 
then something is wrong-in the method, in the application of the 
method, or perhaps in both. They lament, “if we lose sight of people and 
begin producing charts, diagrams, and piles of paper as ends [italics 
added] unto themselves, we fail to effectively communicate.” Currently, 
most software methods generate displays in the form of plots or tables 
that can be used as records but not as dynamic relationships. Contrast this 
with a scientist’s intuitive and interactive use of tables in books. A scien- 
tist can readily use a table on paper either to read or as a relation in his or 
her computing. Since computer tools are not now available that treat 
tables as relationships, their reuse by other software is limited and circui- 
tous-reuse depends, in fact, on the scientist’s intervention based on 
understanding-just as with a paper table. In a similar manner, some 
programs can generate graphs in vivid colors and multiple dimensions 
and animations (see fig. 4, generated by Mathematical (Wolfram, 1991)). 

Figure 4. A three- ln[4]:= 
dimensional plot by 
Mathematical. 

Plot3D[Sin[x] Sinb], {x, 0, 2Pi}, (y, 0, 2Pi}] 
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But alas! Neither this graph nor any of the graphs on a computer screen 
are meant to be used by another program. 

I argue that text, equations, tables, graphs, pictures, and other forms of 
output (e&s) generated by current programs should actually be r~leuns for 
communication among people, understanding by people, and further 
generation of knowledge by people. The greatest unmet need in software 
engineering is developing methods and tools that will capture equations, 
tables, graphs, procedures, and pictures as reusable software objects. 
Moreover, these forms should be part and parcel of text (computer docu- 
ments), just as they are in current paper-based texts. This idea is at the 
heart of Natural Computing. 

10 



5. Information Representations and Domains 

Equations, graphs, and tables are all intended to capture and represent 
functional relationships among a set of variables in a given domain. In the 
following paragraphs, I present examples from widely different domains 
to stress the point that these three forms can represent relationships in 
those domains. First, using a scientific example, I consider the relation- 
ship among the temperature, pressure, and volume of a gas. In the sim- 
plest case, this relationship among the state variables (temperature, 
pressure, and volume) is represented by an ideal gas equation (fig. 5). The 
same relationship can be represented by a table (table 1) or by a graph 
(fig. 6). Any one of the three forms can be used as a means to obtain one 
value of a state variable, given values of the other two. 

Figure 5. Ideal gas 1 Ideal gas equation: 
equation with 
notation. V = R x Tip 

Notation: 
V = Volume, ft3 
R = Gas constant, ft-IbfAbm-deg R 

= 53.35 for air 
T = Temperature, deg R 
p = Pressure, psia 

Table 1. Tabular 
representation of 
temperature-volume- 
pressure relationship 
for an ideal gas. 

Table 1. Specific volume of air (ft3). 

580.0 

590.0 

600.0 

14.61781935 

14.86985072 10.92934 7.286227 5.46467 4.371736 

15.12188209 11.11458 7.409722 5.557292 4.445833 
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Figure 6. Graphic 
representation of 
temperature-volume- 
pressure relationship 
for an ideal gas. 

v (volume, ft3) 

Let us explore the genesis of the three forms for representing relation- 
ships. In general, mathematical analysis of a problem results in a func- 
tional relationship in the form of an equation that we can use in further 
calculations. Experimentally observed data are set up in a tabular form, or 
the results are plotted in the form of a graph. These three forms of repre- 
sentation have strong and weak points. Books on data analysis describe 
such issues in detail, which are beyond the scope of the present discus- 
sion. I limit myself to a few remarks. Graphs show the highest visibility of 
trends. Tables provide some sense for trends but readily reveal magni- 
tudes. Equations are compact, but provide little or no sense of the trend 
(except in simple cases). Barring such specific virtues, these three forms 
are identical in capturing relationships between variables. In comparison 
with these three forms, a black box computer program, which can also 
embody the relationship among the variables, has the least visibility 
when it comes to revealing the trend of a function or algorithm 
(see fig. 7). 

As an example of states of a system and information about the system, 
consider a road map. It represents the states, which are map locations. 
Roads or paths connect the locations. For an automobile to move from 
location A to location B, it needs to take a certain path. A map helps in 
determining which alternative path(s) will take an automobile from A to 
B. A map is two-dimensional and describes a location in terms of its x and 
y coordinates. If we superimpose a map of railroads on our (road) map 
example, the user has more alternative paths to take from A to B. We can 
provide descriptive directions to a traveler on how to go from A to B, or 
we can give the traveler a map and let him or her choose a path. Giving 
directions is algorithmic and brief. On the other hand, by supplying a 
map, we have provided the traveler with considerable information and 
insight. Now, the traveler can choose the shortest path, find a scenic 
route, or replan the route if a roadblock occurs during travel. A map is 
actually a complex graph. Figures 8 and 9 present examples of a map and 
algorithmic directions, respectively. 
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Figure 7. A C++ 
program for ideal gas 
equation. 

main () 

{ 
real R, T, p, v; 
tin >> R; 
tin >> T, p; 
v = R * T/p; 
tout << v; 

1 

Figure 8. A map of a 
city provides 
navigational 
information to a 
traveler. 

Source: AAA. 

Figure 9. Algorithmic 
description of a route. 

From: Sacramento Met Airport 
Take: 5 South 
Exit to Rte 80 east 
Exit to Rte 80 Bus South 
Exit to Exposition Blvd 
To: Cal Exposition 

13 



Table 2. Performance 
status of Yankees on a 
particular day. 

Relationships connect the various states of a system, and they play a key 
role in the description of a system as they describe the behavior of a 
system. Consider the game of baseball. Table 2 shows the performance of 
the New York Yankees on a particular day Figure 10 shows the state of 
the American League and the National League on that day (The Washing- 
ton Post, 1996). As each ball is played, the state of the game between two 
opposing teams changes. A batter, a pitcher, and other players have 
attributes, and they change with each pitch thrown. Numerous states are 
recorded by official scorers and by baseball connoisseurs and aficionados. 
Table 2 and the tables in figure 10 are one set of abstractions or represen- 
tations of all possible and generatable states. 

Groups of players belong to a team, and the states of the teams (league) 
are represented in the table in figure 10. When the results of the next day’s 
games are available, this table can be recalculated according to a set of 
relationships. Take, for example, the following generic equation: 

new status = old status + new result. 

For each team, 

W = W + 1 if the next game was won by this team, or 

W = W if the next game was lost or postponed; 

L = L + 1 if the next game played was lost by this team, or 

L = L if the next game played was won or postponed; 

Pet = W/(W + L); and so on. 

This example illustrates that a system has many states and that a given 
abstraction captures and shows selected states. States comprise sets of 
variables and are connected by means of relationships. 

New York AB R H BI BB SO A% 
Bogs 3b 4 0 1 1 0 0 0.331 
Girardi c 40 000 0 0.282 
O’Neill rf 3 0 1 0 1 0 0.368 
TMartinez lb 4 0 0 0 0 0 0.246 
Sierra dh 3 2 3 0 1 0 0.281 
Duncan 3b 40 000 0 0.343 

GeWilliams If 3 0 0 1 0 0 0.333 

RRivera cf 2 0 1 1 1 0 0.5 

BeWilliams ph 1 0 0 0 0 1 0.278 
DJeter ss 31100 0 0.275 

Totals 31 3 7 3 3 1 - 

14 



Figure 10. Status of 
American and 
National leagues. 

Figure 11. Simple 
steam power plant 
schematic and 
temperature-entropy 
diagram. 

Finally, I present a technical example, the case of a thermal system. The 
operation of a steam plant is shown in figure 11. There are four 
components: a boiler, a turbine, a condenser, and a pump. The states of 
the working fluid (steam) are represented on a temperature-entropy (T-s) 
diagram (Van Wylen and Sonntag, 1965). At a given state, the properties 
(attributes) of the steam of interest to a thermal engineer are p, T, v, s, and 
h. Specific relationships apply to the components that affect a change in 

Source: The Waslziqtoir Post, Monday, 27 May 1996, p C6. 

-\ 
_ ___ ._ 

. 

+ 

. . . . _ . .< 

. ..m 

_t 

i -.. 
f / _ I.;.. . . -_* yi ,(- 

. . :n , / 
i ix’ 
! F_ ‘:. L --;\ 

. .._‘:.l:::..4.,rr ! 

Source: Gordon J. Van Wylen and Richard E. Sonntag (1965). Fzuzdamnztals of 
Classical Tlzcmodyzanzics, John Wiley and Sons, Inc., New York, NY. 
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the state of the steam. Expressed in other words, specific paths connect 
the states (l-2,2-3,3-4, and 4-l). Historically, the calculation of the states 
(i.e., the values of the properties) was done by the use of steam tables and 
steam charts, called Mollier diagrams (fig. 12) (Keenan et al, 1969). 
Mollier charts are highly visual, and their use made the “physics” of the 
steam plant process highly intuitive. However, charts are not accurate, 
since they are limited by their scale. The use of steam tables improved the 
accuracy of the calculations, albeit at the expense of some degree of 
visibility. Since the advent of digital computers, equations were fitted (or 
derived) for the behavior of steam. The equations are extremely complex, 
and their solution by computer algorithms is a “black box” process. 

In every domain, information is essentially captured and represented in 
the form of equations, tables, and graphs. As discussed previously, tradi- 
tional computer programs catered only for algorithmic information. 
However, since people need both information and algorithms to under- 
stand the principles involved in the domain and to perform calculations, 
a scheme where both information and algorithms can simultaneously be 
represented and presented has great merit and utility. 
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Source: Joseph H. Keenan, Frederick G. Keyes, Philip G. Hill, and Joan G. Moore (1969). Stem fibles: 
Tlmn~odynnnric Propcrtirs of W&r hcltdiq Vnpol; Liquid, ad Solid Plzmcs, John Wiley and Sons, Inc., 
New York, NY. 

Figure 12. Properties of steam represented on a Mollier chart. 
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6. Ideal Characteristics of Software Tools 

Having described the features of paper-based computing that people 
have evolved over time, I am ready to state some goals for Natural Com- 
puting. The main goal of good software tools should be to provide a user 
with facilities to read, interactively calculate (as on a scratch pad), and 
develop and record new procedures and information in any calculation- 
intensive domain. Once such good tools are successfully developed, 
electronic information processing can be cleanly divided into three dis- 
tinct parts: (1) software tool development, (2) domain setup and knowl- 
edge incorporation, and (3) end use. In such a scenario, software develop- 
ers create generic tools that know how to operate on text, equations, 
tables, graphs, and pictures. Domain specialists set up and incorporate 
data, information, and procedures, using the generic tools provided to 
them by software developers. Finally, end users use the domain informa- 
tion and procedures provided to them. There will be a clean and clear-cut 
division between the software tool development and the domain incorpo- 
ration. Figure 13 shows this ideal, in contrast with figure 14, which shows 
what is currently standard. In time, as newer versions of software tools 
with greater capabilities evolve, digital computing will approach what is 
natural to people. 

Figure 13. 
Chronological 
sequence in ideal 
Natural Computing. 

Figure 14. 
Chronological 
sequence in current 
standards. 
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7. Evolution of Computing 

Having proposed an ideal set of characteristics for computing, I now 
present a quick survey of the state of the art. Approaches to computer- 
based calculations have continuously evolved. During the fifties and 
sixties, computers were seen as productivity machines. The nature of 
software tools or languages was such that domain specialists could use 
software tools to speed up their calculations and also to apply them to 
more complex problems. It was found to be more effective to train scien- 
tists and engineers in FORTRAN programming than to train software 
developers in science. Similarly, finance and accounting specialists 
adopted COBOL programming. Note that software developers did not 
need to “understand” the domain, because the domain specialists knew 
the programming languages. By the seventies, however, as larger com- 
puter systems became available, these approaches by themselves were not 
adequate. Rather than providing appropriately more natural FORTRAN 
and COBOL, software developers became donrailz software developers. 
The common term for them is “application developers.” 

Till recently, text, graphs, equations, and pictures did not coexist in 
computer documents. The eighties saw the development of desktop 
publishing systems that helped us create excellent documents that in- 
cluded all these various forms. Even so, these objects are generated as 
elzcls and not as meulzs for further continual computing. That is, they are 
representations of information (just like traditional paper documents), but 
they are not tools for digital computing. 

In the eighties, a number of generic tools emerged that permitted scien- 
tists and others to work in symbolic mathematics: Macsyma, SMP, Re- 
duce, MathCAD, TK!Solver, and Mathematical. The popularity and 
widespread use of such tools demonstrate that domain specialists want 
better and more natural tools and not the personal services of “applica- 
tion” developers. 

Graphics programming tools have shown that points, lines, surfaces, and 
so forth, are the language features of a variety of graphics domains, 
whether for building plans, plumbing, machine designs, or integrated 
circuits. The graphics programming area has taken giant steps in develop- 
ing natural software tools that graphic artists can use. Such examples 
should similarly guide us in recognizing the basic features that are ge- 
neric to calculations, especially while one is using graphs and pictures. 

If we follow this trend into software for calculations, operations on tables, 
equations, and graphs can be generic or domain-independent. The first 
step to progress in this area is to represent computing features (tables, 
graphs, equations, etc) as objects, through object-oriented programming. 
The next step is to use those features in a variety of domains. 

19 



8. State of the Art of Tables in Software 

Since I am arguing for an appropriate representation for tables, graphs, 
equations, and other objects, I first examine the state of the art in comput- 
ing with respect to these objects, beginning with tables. Tables are now 
used mainly in two principal areas: database systems and text processing. 

8.1 Tables in Database Systems 

Date (1995, p 79) calls a table a relation, and then (p 80) states, “a relation 
and a table are not really the same thing, although in practice it is fre- 
quently convenient to pretend that they are.” The vast literature on 
database systems might lead an unwary reader to conclude that the 
database community has already represented tables in a 
computer-usable format. However, database relations do not allow 
people to use the most corm-non tables that they know. This situation is 
due to the mathematical rigor of the database systems. Software develop- 
ers are caught in a dilemma between mathematical rigor and the natural 
but highly flexible forms people use. For example, study the baseball 
tables in figure 10 and table 2. Six-year-old children grasp the nuances of 
these tables. These simple-looking tables represent many relationships. 
Lay readers can quickly compare and calculate desired outcomes. As new 
baseball games are played each day, new tables of values can be calcu- 
lated from new data, old table values, and predefined relationships 
(formulas). Databases are not meant to be used that way. 

Shaler et al (1988) discuss formalizing the concept of a table, including 
normalization rules for producing well-formed tables. According to 
Shaler et al, the normalization rules can be viewed from two perspectives. 
The first focuses on the form of data in databases; these rules tell how to 
set up tables so that there is little redundancy in the data-that is, the 
amount of data required to store a certain information content is mini- 
mized. The second perspective (the one most natural to us) looks at the 
normalization rules as statements about the repertoire of forms that we 
use in our model (the fact that we are using tables, for example), and the 
meaning we imply whenever we use a form in a particular manner. 

Date (1995) describes a database system as basically a computerized 
“record-keeping” system. Its overall purpose is to maintain information 
and to make that information available on demand. Date considers three 
classes of users: the application programmers, the end users, and the 
database administrators. Date also gives a slightly more precise definition 
of the database: “A database consists of some collection of persistent data 
that is used by application systems of some given enterprise.” 

While defining what a relational system is, Date states that in the rela- 
tional system, the user perceives the data as tables (and nothing but 
tables) (p 22). He goes on to state, “For most practical purposes, indeed, 
the terms relation and table can be taken to be synonymous.” The rela- 
tional model is a way of looking at data-that is, it is a prescription for a 
way of representing data (namely, by means of tables). 
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A scrutiny of table 2 and the tables in figure 10 will reveal the simple- 
appearing means used by natural tables to represent a variety of complex 
relationships; by contrast, the best database systems are much more 
limited. For example, in natural tables, ranges are represented, blanks are 
allowed with definite meanings, and data types are mixed with no prob- 
lems. In the first column of table 2, notice how a batter and information 
on his field position are combined! A database system will not allow such 
mixing. 

Despite the extensive use and discussion of “tables” in database systems, 
these entities are much more limited than real-world tables and do not 
provide a way to capture the complex relationships that nnturul tables 
embody. 

8.2 Tables in Text-Processing Tools 

As suggested earlier, tables in word processors and publishing tools are 
displays only; the meaning relationships among the elements are sup- 
plied by the reader and are not inherent in the tables themselves. Discus- 
sions of tables in text processing accordingly focus on their display 
features. 

Morris (1996, p 79) describes how tables are formatted and added as a 
new feature of Hypertext Mark-Up Language (HTML) so that HTML can 
become a true publishing medium. As is common with HTML docu- 
ments, tags are used to define a table and its components. A table is 
divided into rows and cells. Techniques are defined to format text in table 
cells. However, these formatting rules are merely to represent tables for 
display. Creation and editing are permitted, but no other data manipula- 
tion and use are possible at present. 

Lemay (1996, pp 194,440) discusses formatting of tables for use on the 
World Wide Web, and again the emphasis is on creating tables at the 
transmitter’s terminal (or server) and their display at the receivers’ 
(client) terminals. To add tables to your web page, Netscape features table 
heading cells and table data cells. Lemay also suggests the use of lists, 
images, and preformatted text as alternatives to tables. 

In its “Autoformat” feature, Microsoft Word (version 7.0,1995) accommo- 
dates 38 different formats for a table. It also allows for columns to be split 
(table 3). However, the purpose of these operations is display in a natural- 
looking fashion. But no methods exist that support the placement, re- 
trieval, or manipulation of data. 

As this brief discussion shows, although modern text-processing tools 
provide more or less sophisticated methods for creating tables as dis- 
plays, they provide no tools for capturing the relationships represented 
by tables. Just like paper tables, these (text processing) tables rely on a 
human interpreter to supply meaning. 
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Table 3. A table in a 
word processor 
showing an element 
spanning two 
columns. 

8.3 

Monday Tuesday Wednesday Thursday 
AM PM 

- - - - - 

- - - - - 
- - - - - 

Table Usage in Real World 

In the examples of tables given in section 5, I chose the baseball tables to 
illustrate the ubiquity of tables in the real world. A four- to six-year-old 
(in U.S.) understands a baseball table. A child of four understands a table 
of menus and prices at a fast-food restaurant. With only a basic knowl- 
edge, the child can easily process this table. Humans gain such processing 
knowledge independent of the domain. It appears that, initially, they 
apply the processing knowledge to simple cases in their favorite domains 
and later extend it to complex domains. As people grow, they compre- 
hend more complex table constructions. With a little help, or through 
exploration, they understand tables of increasing complexity. And they 
continually add more complex tables to their repertoire. That is the nature 
of our learning! 

A teenage student may have problems with school homework but under- 
stands tables comparing automobiles in the April issue of Consunzer 
Reports. These tables do not even use numbers in the cells. Circles filled 
with red and black colors are used, and footnotes explain what the vari- 
ous colored circles mean. 

On a more advanced level, the example of logarithmic tables demon- 
strates that a table can be much more than the record-keeping tool of 
database programming. Before the slide rule, the calculator, and the 
computer led to their demise, log tables were used by scientists and 
engineers as an integral part of a calculation. Each table element entry in 
the body of a log table is the value of the logarithm of a given number 
indicated by a combination of row and column heading. (This convention 
alone is sufficient to show that a table is not merely a database.) A 
complementary table contains antilogarithms. Other examples of tables 
used directly to facilitate computations are tables of values of sine, cosine, 
tangent, sinh, cosinh, tanh, and so forth. 

Of course, those well versed in mathematics preferred to use equations 
rather than resorting to tables, and still others represented the functional 
relationship in a graphical form-a curve. This is an instance of the same 
functional relationship among variables being represented by tables, 
equations, and graphs. In other instances, such as experimental data and 
empirical observations (e.g., baseball results), where equations are diffi- 
cult to fit, tables of data are the only recourse. 

How do we use tables? As a relation is the simple answer-or as a reposi- 
tory. We use tables to obtain textual information, symbolic information, 
graphic information, and finally numerical data. But most of all, we 
interpret the information for subsequent and continual use. Our software 
versions of tables should allow us to do the same things. 

22 



9. An Analysis of Tables 

Having described in the previous section how tables are represented in 
traditional databases and text-processing documents, I analyze in this 
section some characteristics of tables as they are used in real life, describ- 
ing their anatomy and morphology; I suggest that these characteristics 
should be captured in software, so as to allow software operations on 
tables that parallel the real-world operations that scientists and engineers 
perform with paper tables. 

A body of knowledge has developed about tables, their representation, 
and their behavior. This knowledge is essentially empirical and unwrit- 
ten. When we try to program the structure and behavior of tables in 
software, it is important to understand and capture these traditional 
conventions and nuances. 

9.1 Anatomy and Morphology 

9.1.1 Table Parts 

Figure 15 shows the terminology for parts of a table used in printing by 
the U.S. Government Printing Office (GPO, 1984). However, since such 
terminology is not inclusive (and much of it is related strictly to the 
display aspect of tables), I depart from it and use my own terms for 
certain parts of a table. 

A table represents some characteristics and values in a domain (such as 
the standings of a baseball team). Here I start with a two-dimensional 
rectangular array as a common example of a table, while not restricting 
my discussion to it. As shown in figure 16, a table can be divided into the 
title, the set of column labels, and the table body; further, within the body, 
the first column often has special status. 

The table caytiorz gives it an identity, describing the subject matter of the 
table. In documents such as books, we find lists of tables that bring 
together all the table titles to one location. The list of titles (including page 
numbers) is called the table of contents and is used as an index into the 
book. 

I refer to the set of column labels as the colz4nzn Izeder, which is called in 
GPO terms the “boxhead.” This part of the table describes the characteris- 
tics that are represented in the columns. Table column headers (boxheads) 
are usually complex data forms. For example, the elements may carry a 
characteristic, an abbreviated variable or symbol standing for the charac- 
teristic, and appropriate units for the characteristic-such as “Frequencyf 
(Hz).” It is often not sufficient to represent a characteristic alone; for 
practical utility, its units must also be included. User-friendly, practical 
tables show the units for a given characteristic in the same or in an adjoin- 
ing element. Figure 17 shows the anatomy of a table column header 
(boxhead). 
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Figure 15. Parts of a table. 
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Figure 16. Anatomy of 
a simple table. Caption * Table 7-1. Thermal properties. 

Header 1 

Footnote 

-3 
Applicable to real gases. 

Figure 17. Table 
column header 
(boxhead) object. 

0.0 

1.0 

Cells 

O,l 0,3 

1,1- 12 I,3 w ~-,~rr______l, ----- 

Contents + 
Pressure 

psia 

Temperature 

deg F degC 

Volume 

ft3 

The table bok~ contains the data characterized in the column header. The 
elements in each column represent values pertaining to the corresponding 
column label. The elements along a row also usually form a consistent set; 
that is, they relate properties of a given state.* Consequently, each element 
in a table body is associated with its neighbors in a row and with its 
neighbors in a column. 

*In some unusual tables, the columns are merely unassociated lists. Although such tables are the minority, 
they should be included in the analysis. One way to analyze such a column might be as one cell contain- 
ing a list, rather than a set of cells. Natural Computing software should be able to reveal both relation- 
ships and lack of relationship. 
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Figure 18. Table data 
body object. 

An element in a table body can be a number, text, a graphic symbol, or 
any combination that makes sense to a user. Elements within a table can 
represent continuous states of a field (such as the thermal properties of a 
gas or the depth of a sea over a given area). Or the values in the table can 
be discrete and represent values only at distinct (finite) states. In the 
former, values can be interpolated, while interpolation is meaningless in 
the latter. 

Table data body elements (fig. 18) are usually uniform, being either 
textual data or numbers. But it is not uncommon to see variations and 
omissions on this uniformity of data. Table elements carry blanks, dashed 
lines, a series of dots, remarks, and so forth. 

The first column in many tables stands in a special relationship to the 
other columns; elements in the first column often characterize in some 
way the other elements in the rows. (In GPO terminology, the first col- 
umn is called the “stub” column; see fig. 15.) This relationship may be 
similar to that between the column header and the table body; for some 
tables, the first column could act as the column header if the table were 
rotated 90”. I refer to such a column as a row header, to capture the parallel 
with the column header. (Although it is not at the head of the table in the 
sense of being at the top (as the column header is), its elements act as the 
“heads” of each row in a “command” sense.) It is also not unusual to find 
labeled subdivisions in a row header (in GPO terms, “centerheads” in the 
stub column). These labels correspond to spanner heads in the boxhead 
(see fig. 15), and reveal another way in which column headers and row 
headers can have parallel functions. In some types of tables, the first 
column information may be interpreted as the independent variable on 
which information in the other columns depends; for some relationships, 
it may be possible to “promote” another column to the first position and 
thus treat its information as independent. The various meanings that the 
first column can carry will require careful analysis. 

Cell cage + 
0,0 0,1 02 

Cell types 11 .L!lZ iii L?lE 

38 3,1 32 

48 491 42 

100 250 200 250 300 
212 239 320 360 410 
5.4 4.3 3.6 3.1 2.7 



A common optional feature of tables is notes. These qualification marks 
(head notes or footnotes) may be carried by some table elements. Some 
apply to the whole table, while others apply to specific rows, columns, or 
elements. Domain specialists use these marks and footnoted explanations 
to capture the vagaries of information. Users are expected to be cautious 
of the notes and be sure to apply necessary checks for maximum validity 
of the data and information. 

9.1.2 Capturing Meanings Expressed in Tables 

Real-world tables made up of the generic parts just described are used to 
express a variety of relationships. Over the years, people have developed 
table conventions that allow us to indicate these relationships, their 
applicability, and their limits. In Natural Computing, we will require 
software tools that are sufficiently rich to capture these meanings. 

The steam tables alluded to earlier (sect. 5) demonstrate the generic 
structure and behavior of a table. Steam has a thermodynamic state, 
which is captured as a number of properties: pressure, temperature, 
specific volume, internal energy, enthalpy, and entropy Given any two of 
these properties, the state is completely defined. Hence, the properties of 
steam or other gases can be represented by means of a two-dimensional 
table. No matter which gas the table represents, the structure and behav- 
ior of a table are generic from a software development perspective. 

In some tables, the functional relationship holds only at the points given 
in the table, whereas in others, the data can be interpolated and/or 
extrapolated. Thus, Natural Computing will require the implementation 
of tables with differing behavior. Whether and how interpolation is done 
would be a property of the table: interpolations and extrapolations can be 
along the rows, columns, or both; also, this property would define which 
of several types of interpolations apply (arithmetic interpolation being the 
most common). 

An interesting example is presented in figure 19, where cells in a column 
contain ranges of numbers (Shigley, 1977). When cells are filled with 
ranges instead of single numbers, we can (in essence) avoid the need for 
many if-then or switch-and-case statements in programming by the 
appropriate use of such table columns. In the example table, the first row 
of values can be used only if the size range is within 0.004 to 0.250 in. This 
demonstrates a clever means of representing an IF statement in a table! In 
some cases, as in the spring materials example shown in the figure, a 
table element may prescribe an allowable range for the rest of the rela- 
tionship to hold. Ordinarily, however, an allowable point value is 
prescribed. 

Table cells may contain the results of manipulation of other cells (e.g., the 
sum of values of a number of other designated cells), as in a spreadsheet. 
(Before the development of computer spreadsheets, people used such 
methods with simple tables and called them “worksheets.“) In some 
instances, the value obtained from the table element is modified based on 
footnotes or other notes. Thus a table is not merely a lookup table; it also 

27 



Figure 19. A table 
example wherein 
cells in a column 
contain ranges of 
numbers. 

Source: Joseph E. Shigley (1977). Mechanica Engineering Design, 3rd ed., 
McGraw-Hill Book Co., New York, NY. 

informs us to Zook out for footnoted interpretations based on conditions. I 
call this quality the responsibility of an object during computations. In the 
Natural Computing approach to tables, it is important to ensure that a 
table object behaves responsibly; that is, it must account for the footnotes, 
the exceptions, and the units. The software tool developer, who develops 
table classes, should endow the tables with the correct behavior (for 
example, interpolation allowed or disallowed). The domain specialist, 
who programs a specific calculation and information in the domain, 
should select the table with the right behavior. If the table object behaves 
responsibly, the naive end user will have no problems with the tables and 
with the calculation capabilities of those tables. 

Another aspect of a responsible table in my sense is the proper treatment 
of units. In the real world, variables do not come with consistent units 
across all interfaces and applications. For example, clothing manufactur- 
ers buy cloth in yards, but pattern cutters use inches for their measure- 
ments. We may enter a table with one set of units, while the table values 
are in a different set of units. The responsible user-friendly table should 
accommodate any consistent set of units. 

Figure 20 shows a spectrum of tables (classes and categories). This dis- 
play is called a profile representation of options (Warfield, 1994, and 
Warfield and Cardenas, 1994). It shows that a table header can have three 
options, a cell cage can have four options, and so on. As we pick each 
option and explore the various combinations, a large number of practical 
tables can be covered for representation in the Natural Computing 
system. 

9.2 Operations 

The extraction of information from a table is one of the simplest of opera- 
tions possible with a table. People perform far more sophisticated opera- 
tions on or with tables. For example, two tables can be added. A simple 
example is provided by tables 4 and 5. 
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Header 

_ Column 
header 

_ Row 
header 

- Both 

Following the object-oriented programming style, we should be able to 
write 

table 4 + table 5 = table 6, 

and obtain the result in table 6. 

The I’+” operator can be overloaded so that it adds tables in a specified 
way We obtain the total sales for both regions by adding the values in the 
two tables. Note that not all elements, but only the appropriate data 
elements (those in the sales column) are added. This addition can be 
repeated a number of times, so that we can get weekly results by adding 7 
tables of daily data, or annual results by adding 12 monthly data tables. 
ln a similar manner, we can define subtraction, scalar multiplication, and 
scalar division operations for tables. 

Cell cage 

I Rectangular 

I Multiples 

II Collapsing 
multiples 

- Combination 

Cell 

. Numeric 

I String 

. Blank 

I Graphic 

I Composite 

Interpolation 

I Yes 

I No 

Figure 20. A spectrum of generable table types in profile representation. 

Table 4. Sales in East 
Region. 

Table 5. Sales in West 
Region. 

Table 6. Result table: 
sales in both regions. 

Item Sales 
(S) 

Coffee 
Donuts 

250 
890 

Item Sales 
(S) 

Coffee 
Donuts 

220 
1000 

Item Sales 
(S) 

Notes 

- Footnotes 

- Cell notes 

- Other notes 

Coffee 
Donuts 

470 
1890 
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9.3 Representation of Structure 

What representation would give software tables the functionality of real- 
world tables? Object-oriented programming techniques are the answer. A 
table class category can be defined, and specific table objects can be 
instances of classes from that category. Since tables come in a wide variety 
and serve a variety of functions, they call for a number of classes, which 
can be derived from base classes. 

The table anatomy given in section 9.1.1 is a good starting point for 
designing a structure for the table. A table is first divided into several 
components (table title, column header, row header, table data body, and 
notes). The column header, row header, and table data body consist of 
several cells. These components themselves can be represented by compo- 
sition classes (that is, a collection of other classes/objects) containing 
several cells. The cells in turn contain numbers, text strings, graphic 
symbols, and so forth. Therefore, the cells will be represented by several 
distinct types of classes. In a separate report (ARL-TR-2041), I discuss 
computer representations of tables in detail (Karamchetty, 2000a); here I 
give only a brief description. 

Traditionally, cells in a table are represented as elements of a two- 
dimensional array But such a representation inherently limits the table to 
a rectangular arrangement. It cannot handle tables where columns have 
subcolumns and where columns (or rows) combine. We can avoid this 
limitation by decoupling the table structure and the data (see fig. 21). 
Table structure (both headers and data body) is captured in a cell cage. 
The cells are numbered by their row and column indexes (0,O; 0,l; etc). An 
array of all cell locations and pointers to data is set up as shown in figure 
21. We can define mathematical properties for the cell-cage structure. That 
is, the cell-cage location can be computed by means of the cell-cage array 
location, the cell-cage type, and cell-cage size. The array location and cell- 
cage location can yield adjacency lists that show which cells have neigh- 
borly relationships. The array element also points to the contents of the 
cell. This indirect pointer notation connects the cell-cage location and the 
contents. The separation of both the structure and the contents of a table 
is in harmony with the philosophy that operations on the table should be 
generic. 

Table column headers (and row headers, where applicable) describe what 
the column (row) represents. Each cell of a header typically consists of a 
variable (and often a symbol for that variable) and a string descriptor. 

In most science .and engineering applications, symbols are used for 
variables, which may be explained on first use or in a list of notation (akin 
to the data dictionary in database systems). For example, in equations, 
tables, and graphs, one might use p as the variable standing for pressure. 
This definition would be included in the list of notation. Some books 
additionally carry a list of units, with entries such as “y, psia.” But it is 
common to indicate the units on the list of notation, with entries such as 
“y, pressure (psia).” (Such an entry could correspond to a column header 



Figure 21. Cell-cage 
array connects cell Cell-cage array 
locations and 
contents. Array Cell contents 
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cell.) In a Natural Computing document, the list of notation will bring 
together all the variables in the document along with explanations. In 
fact, each table header cell pointer should point to a unique memory 
location where the variable and its notation and explanation are stored. In 
some cases, different variables are used for the same quantity in separate 
contexts; such situations can be handled separately. 

9.4 Development, Choice, and Use 

In the foregoing, I have identified a number of different types of tables. 
The most frequently used tables can be selected, programmed by a soft- 
ware developer, and provided in a tool box or Natural Computing envi- 
ronment for use by domain specialists, who will select a table type that 
best fits the needs of a particular application. Thus, an instance of a blank 
table is created. In the creating/editing mode, all data and information 
are entered into the table by the domain specialist, who is also responsible 
for choosing and filling in the footnotes and other notes as applicable. The 
table object also develops a number of behavioral characteristics for the 
domain specialist to review. For example, the domain specialist records 
the limit values (minimum, maximum, and singularities) of a characteris- 
tic. The table object would use these limits to flag an error message if a 
user tries unallowable values. This is another table feature that we want 
to capture so that our software can imitate human usage of tables; in real- 
world applications, domain specialists often provide such checks. Mini- 
mum and maximum values of a variable prevent extrapolation outside 
allowable bounds. 

A table object will also have a set of input (or query) templates and 
output templates. Many tables describe functional relationships among 
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9.5 

Figure 22. Adjacency 
property is used to 
get table values. 
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quantities (variables or characteristics) identified in the cells of the col- 
umn header. Given one of them (and appropriate data), the others can be 
determined from the table. We can use this functional relationship in 
generating query templates. The user should be able to choose the appro- 
priate input template, type in a value for the independent variable, 
submit it to the table object, and obtain the result in an output template. 
The input template also guides the user with the limits on the variable 
values. These guidance values in the templates protect a table from 
invalid or out-of-range queries. A table with input and output templates 
can be likened to a computer hardware component with its input and 
output sockets and pins. These input and output templates are very 
useful in connecting different functional objects into a procedure (proce- 
dures are described in sect. 12). 

Search for Data 

Since the cells in a table can be connected by adjacency lists and pointers 
to neighbors, and pointers lead to data values or contents, searching 
a table for result data items is very simple. A query consists of an 
independent-variable/value pair and a dependent variable. We wish to 
find the value corresponding to the dependent variable. We use the 
simple property of a table that two value cells bear the same neighborly 
or adjacency relationship as the corresponding two variable cells do. This 
relationship is depicted in figure 22. 

Pressure Temperature 
psia deg F 

Volume 
ft3 

1 I I 

239 I 4.3 

200 320 3.6 

250 360 3.1 I I 

300 410 2.7 

has 2nd East neighbor 



9.6 Visibility of Data 

Educators criticize current software systems as black boxes: because the 
solution method is opaque to the user, the user learns nothing from the 
software. Even domain specialists do not understand what is in the code 
once their domain information is coded by a software developer. With 
traditional media (paper, calculator, and pencil), students continue to 
learn as they solve a number of problems. With traditional computer 
software, a student’s learning has no correlation with the number of 
problems solved. In contrast, because tables in Natural Computing reveal 
themselves and show relationships between variables, a student can 
realize opportunities available and watch out for pitfalls in the problem 
domain represented by each table. 

9.7 Table Data Storage 

In Natural Computing, data in table components are stored in tagged or 
named and connected arrays. A domain specialist would choose the type 
of table needed for a specific application. Generic table structures and 
methods would be automatically available for the application. The spe- 
cialist would also specify the size of the table. 

9.8 Display 

As pointed out in section 8, current software systems have addressed the 
display of tables extensively. Display is an important aspect of Natural 
Computing, since domain specialists and users interact with displayed 
tables. Again, display functions and methods are developed for generic 
tables. The end users are given greater flexibility to choose the displays 
that most suit their needs and comfort level. Natural Computing should 
follow the display practices that are commonly found in books and 
currently popular software, since these represent the most natural way for 
users to use and understand tables. However, three types of displays are 
needed: (1) for tables embedded in text, (2) for activated tables for interac- 
tive calculations, and (3) for tables 40 

to create procedures. 

9.9 Testing a Table in Isolation 

Testing is a key task in software development. Capturing an application 
domain in software is equally critical. By isolating a table and testing it 
for a variety of inputs, together with the built-in justifications, limits, 
behaviors, and responsibilities prescribed for a table class, a Natural 
Computing programmer can go a long way toward eliminating bugs in 
software that uses tables. Since the filters on the table will allow only 
preapproved types and ranges of values, isolated testing can come very 
near guaranteeing the software and the domain information. 
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9.10 Growth of a System 

Two types of system growth can be anticipated. The first is domain 
growth. A given domain will incorporate more complex problems, and 
other complex problems will cover a wide variety of domains. As domain 
coverage grows, tables will need to be represented with more complex 
features. As new table features (either structure or behavior) are encoun- 
tered (or invented), software developers will play a primary role in 
developing those extended features. This second kind of growth will 
result in new software tools and environments or new versions of 
software. 
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10. Graphs 

In section 9, I focused on describing table objects to demonstrate the 
importance of using natural objects, as well as showing methods to 
implement them. However, in addition to tables, Natural Computing 
consists of graphs, equations, and diagrams. The philosophy for repre- 
senting these objects is similar to that used for table objects. In this sec- 
tion, I briefly describe the representation of graph objects. 

10.1 State of Art in Graph Representation 

The last decade of computer development has seen an explosion of 
graphics-based programming. .Currently, powerful picture and image 
presentation and processing software systems are commercially available. 
Many programs generate and output excellent graphs, curves, or charts. 
Figure 4 is an example of an excellent-looking and complex graph gener- 
ated by Mathematical for a user to see but to do no other computation. 

This class of programs generates graphs as elzds (in the words of Coad 
and Yourdon, 1991) in themselves. Currently, no programs exist that use 
graphs as the nleons for calculations. In paper-based calculations, users 
use graphs to observe trends and discern the behavior of variables. Most 
notably, they use graphs to obtain resultant values. Using graphs in 
calculation helps people understand the “physics” of a problem. Take the 
example of the pipe friction coefficient graph in figure 23 (Karassik, 1976). 
With sophisticated equation-fitting programs, it is possible to develop a 
highly complex set of equations to replace this graph. But in the process, 
the intuition into the problem is completely lost. A hydraulics specialist 
and an end user will notice three distinct regions from this graph. The 
first one is the laminar flow region, where the friction coefficient is a 
function of Reynolds’ number and is not a function of surface roughness. 
Then there is a transition region where the pipe friction is not well de- 
fined. The third region is the turbulence region, where the pipe friction is 
strongly influenced by surface roughness. For each pipe roughness value, 
the curves generally tend to become flat after a certain Reynolds’ number 
value. No equation can represent the functional relationship depicted by 
the graph in figure 23 and be intuitive enough that a domain specialist or 
user can notice that he or she is operating in a distinct region of behavior 
of the fluid (Streeter, 1971). On the other hand, the graph teaches or 
reminds the user that two distinctly different variables influence the 
results in the regions. The visibility of the underlying processes in com- 
puting is the most important reason to discard black-box programming 
and use visible and intuitive programming methods. Natural Computing 
graphs are essential to maintaining this visibility and intuitive usefulness. 

Many of the points made in section 9 about tables also apply to graphs 
and other Natural Computing objects. In this section, I briefly describe 
some of the features specific to graphs. 

“Such as Theorist and TableCurve (described in Douglas A. Smith and James I? Adams, Scientfic Comput- 
ing am/ htomation, July 1993, 27-28). 
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Figure 23. Example graph showing how a graphical relationship provides visibility to data and 
information. 

10.2 Natural Computing Graph Representation 

One represents a graph object by declaring, defining, and implementing a 
graph class. For computer internal storage purposes, graphs can be 
represented either by a table of x and y coordinates or by an equation. In 
the former case, a graph class will have a two-dimensional array of data 
members containing the x and y coordinates. The number of sets of points 
depends on the complexity of the graph and the desired accuracy. If there 
is more than one line or curve in the graph, a multidimensional array can 
be used and a parameter value is associated with each line or curve. 
Consequently, a graph class, in turn, will use an equation object as a 
member or a table object as a member to represent the data for the graph. 

Graphs also have captions. The captions are listed in a table of contents to 
indicate all graphs available in a document. The other salient members of 
a graph class are the x and y axes, labels for x and y axes, and other notes. 
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Like tables, some graphs can be interpolated along a curve, among a set 
of curves, or both, while some other graphs cannot be interpolated. This 
interpolation characteristic is an attribute of a graph class. The informa- 
tion needed to display a graph (picture size, grid lines, line styles, and so 
forth) is captured as part of the display data members of a graph. It is 
interesting to note two points: (1) the display-related information is not 
needed for calculations of results using graphs, and (2) calculations are 
essentially done as if the data were in a table or an equation. Graphs 
should carry a cursor whose shape can be changed at the user’s discre- 
tion. A full-size crosshair could be moved along the graph that highlights 
the point on the graph that is being examined. In place of, or besides a 
cursor, a property window could be displayed, indicating numerical 
values at the point of examination. As a user scans a graph, the cursor or 
crosshairs should move over the graph, and the property window dis- 
plays the numerical values of the variables at the point on the graph. 

On hard copies, the accuracy obtainable from graphs is limited by the 
paper size. On the computer, zooming in allows the accuracy of graphs to 
be improved, if detailed data are available. However, the use of a prop- 
erty window can give us highly accurate results up to several significant 
digits, perhaps making zooming unnecessary. (Excessive zooming could 
actually lead to a temporary loss of the visibility of the overall trend of 
results.) 

Graphs would carry input and output boxes so that the user can type in 
input values and see the results from the graph in the output box. Both 
types of boxes would carry names of the variables and their units. Graphs 
too would have filters and justifiers to check the consistency of data and 
units. Graphs would also have lower and upper bounds, as well as 
singularities in between. With these facilities, graphs could be seen, 
interactively used, and connected into procedures. In many ways, graph 
objects will have characteristic behaviors similar to those of tables (graphs 
are the subject of a separate report (Karamchetty, 2000b)). 

The example of steam tables is again applicable. Historically, steam 
engineers used the Mollier chart, which represented the properties of 
steam graphically. One could quickly perform or do steam power plant 
calculations by laying out the thermal processes on the Mollier chart. One 
could visually represent the complete steam cycle by marking the various 
state points on the chart. 

The old paper Mollier charts suffered from inaccuracies. Replacing them 
with Natural Computing graphs in electronic media and using property 
windows could improve accuracy while retaining their visual benefits. 
Steam cycles could be laid out on these charts with great speed. A Mollier 
chart represents the properties of liquid water, water and steam mixture, 
and superheated steam. Various temperature, pressure, steam quality 
(dryness), and specific volume contours are drawn on the chart. A line is 
also shown that presents the states that separate the liquid and mixture 
states on the one side and the vapor and mixture states on the other. The 
contours are completely interpolatable for all properties. 
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Steam engineers find the chart highly useful in ensuring that various 
dryness qualities are adhered to in designing equipment. Although 
computer programs are now available to calculate steam cycles, none of 
them can match the visibility and simplicity of a Mollier chart. With 
Natural Computing, one can restore the visibility while maintaining the 
accuracy and speed of the computing methods. Additionally, one can lay 
problems out on the chart on the fly, while preserving the speed, accuracy, 
and efficiency of computer calculations. 



11. Equations 

Figure 24. An 
example showing 
interactive use of an 
equation. 

Equations are the last of the three functional representations. I do not 
propose to describe this feature in any great detail, as a number of current 
software systems allow equations to be typed in and used as functional 
relationships. But the use of equations along with graphs and tables in 
Natural Computing is very powerful. Moreover, the representation and 
use of equations follow the philosophy and methods described in the 
foregoing sections. 

Equations are developed as a category of classes. An equation class 
consists of member data representing the operators and operands in a 
given sequence. Their relationship is captured in the form of a tree 
structure. 

A noteworthy feature of equation classes in Natural Computing is that 
they have a justifier function that protects an equation object from mixing 
quantities of dissimilar units. For example, the units justifier evaluates the 
units of each expression and flags inconsistencies in the units. For ex- 
ample, the units of all operands of the operators =, +, and - should be the 
same. 

Like tables and graphs, equation classes also carry input and output 
boxes so that the user can type in input values and see the results from 
the graph in the output box. Both types of boxes carry the names of the 
variables and their units. Equations are identified by an equation number 
and caption. These equation numbers and captions can be grouped into a 
list of equation captions for indexing. (Although the use of equation 
captions is not common in printed media, they would clearly be useful 
for portable electronic documents.) Figure 24 shows an example of an 
equation with input and output templates for inserting inputs and obtain- 
ing result values. 

a Input 
x=2 

Y = III s + c output E Y=7 
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12. Procedures 

Figure 25. A Natural 
Computing procedure 
example. 

In paper-based calculations, people develop procedures by combining 
several objects (tables, graphs, and equations). The output of one object is 
used as input to another object, and so on in some sequence. People use 
each of the objects, note intermediate results on a scratch pad, carry them 
into the next object, and so on. 

In a predefined procedure, this chaining is done at the variable level. To 
facilitate this process, in Natural Computing, I define a new object called 
a pipe. In its simplest form, a pipe has a donor and a donee (a recipient). A 
donor is a variable that provides its value to the pipe. The pipe carries 
that value to the donee, which is a variable in another (downstream) 
object. In more complex pipes, a pipe can have several pairs of donors 
and donees. 

One can set up procedures by chaining several equations, tables, graphs, 
and other procedures to compute a complex calculation repeatedly In 
that sense, a procedure is like a computer program. But a procedure still 
retains a high level of visibility, since the user can open up a procedure 
and inspect its component objects. 

A large procedure can be built from a number of small procedures. By 
testing and verifying each procedure in isolation, one can assure high 
quality for the composite procedure. A domain specialist can reuse and 
rearrange the components of a procedure and develop a new procedure. 
Figure 25 shows a procedure that consists of several graphs and tables 
connected. This procedure can be inserted into a program as step k. When 
a procedure is opened up, the details of it become visible. 

II H -I 
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13. Pictures 

Figure 26. (a) 
Dimensions from 
(a) a sketch used in 
(b) an equation. 

Paper-based computing uses sketches, drawings, and schematics to show 
the relative positions of variables and properties. For example, a sketch or 
a drawing may show a number of dimensions of a component or an 
assembly. Some of the dimensions are used in equations, tables, and 
graphs. One can set up a procedure in which the dimension placed on a 
sketch or a drawing can be piped into a procedure and made part of that 
procedure. Or in reverse, a calculation can generate a size, which can be 
piped into a drawing. Figure 26 shows a sketch from which values of 
variables can be connected to an equation. 

Schematic diagrams are extensively used in engineering. A schematic 
diagram shows how various components are connected and how a 
flowing fluid, for example, changes its state. Figure 11 showed a sche- 
matic diagram of a thermal power plant. Water or steam flows through 
pipes and components, and during the course of its flow, steam changes 
its state. There are equations, tables, and/or graphs that relate various 
properties of these states. Schematics add another dimension to the 
visibility and understanding of a problem. 

(b) 

\ 
Notation 

D = <oil diameter, inches 
d = wire diameter, inches 
C = constant, no units 



14. Text 

Natural Computing calculation features are embedded in text as in a 
document or book. Text along with tables, graphs, and equations is 
displayed for a reader to peruse. Two other modes are available: use 
within a document, or reuse in other documents. Any time the end user 
wishes to do a simple calculation using any of these objects embedded in 
text, that object can be activated. Appropriate inputs into the objects will 
produce resultant values. After using those objects, the end user can 
revert to reading the text by closing those objects. This is the within- 
document mode. In the reuse mode, an end user can develop new proce- 
dures by copying objects from documents and connecting them. These 
procedures can be saved for future use. Figure 27 shows a procedure 
embedded in text. 

r 
File: Helical SpringsNCS 1 ACTION ,, FEATURES ENI- 

Text Undo 

Tables cut 
Stresses in Helical Springs 

Program use Equations copy 

spring loaded by the axial force F. 

the mean spnng diameter and 

portion replaced by the internal forces. Then. the cut 

portion would exert a dwect shear force F and a 
torsion Jon the remanng part 
superposition. the maximum sir 

computed using the equation 

max =py- + A 

Replacing the terms by 

J= FD/Z. q 
r=dlZ. 
J=nd4132,and 

A=nd2/4 

gives 

5=BFD+ 4F 

PO3 Ed2 

In this equation, the subscript 

shear stress has been omitte 
unnecessary. The positwe slg 
retained. and hence Eq. (b) gi 
the irwde fiber of the spring. 
Now define spring Index 

C=$ 

cl as a measure of the coil curv 
Eq. (b) can be arranged to g~v 

Figure 27. Natural computing text with procedure. 



15. Conclusions 

Traditional programming or software development focused on making it 
easy for a software developer while he or she tried to understand a 
domain and worked in it. Database systems aimed at achieving math- 
ematical correctness and elegance (Date, 1995) versus emulating real- 
world tables. Software systems, such as word processors and computer- 
aided drafting systems, have broken that tradition and provided domain 
users with generic software for use with no further assistance from 
software developers. 

Scientists and engineers use information from reference books, textbooks, 
and journals. Reference information is useful over long time periods, 
while textbook information is more recent. Journal information relates to 
the latest inventions or discoveries. With Natural Computing documents, 
after reading about an interesting new scientific discovery in a journal, a 
scientist can readily combine it with existing information in textbooks or 
reference books, since this process of combining information is extremely 
simple. The scientist can copy the Natural Computing feature (equation, 
graph, table, procedure, or picture) and combine it with an existing 
procedure. Presto! A new algorithm or procedure is instantly developed 
for further use. The scientist can instantaneously communicate it to others 
interested in the new procedure. This is what I mean by asserting that 
Natural Computing allows for the creation and communication of new 
knowledge. 

Natural Computing focuses on developing generic calculation software 
for use by domain specialists in science, engineering, and other fields that 
depend on calculation. With the Natural Computing environment and 
tools, domain specialists could work with tables, graphs, equations, 
procedures, pictures, and text. Among the benefits of this approach are 
economical and affordable generation of applications, high quality of 
software and applications, high growth potential for applications, high 
reuse of applications, ready availability of high-utihty information in 
electronic media, and rapid transmission of domain information. 
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naive end users. Domain information and knowledge can be captured in electronic books and 
communicated electronically for further expeditious use. Natural Computing eases application system 
development and accelerates domain knowledge dissemination, leading to quicker development of further 
knowledge. 
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